
3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 1/8

ForrestTheWoods

Home Blog Portfolio

Reverse Engineering Sublime Text’s
Fuzzy Match
March 28, 2016

Sublime Text is my favorite text editor for programming.

One of my favorite features of Sublime Text is it’s fuzzy search algorithm. It’s
blistering fast at navigating to files and functions. Many people on the internet have
asked how it works. None of the answers were satisfying. So I decided to figure it
out myself.

(Note: Updated on 2/18/2017 with improved exhaustive search. See bottom for
details.)

https://www.forrestthewoods.com/
https://www.forrestthewoods.com/
https://www.forrestthewoods.com/blog/
https://www.forrestthewoods.com/portfolio/
https://www.sublimetext.com/

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 2/8

Interactive Demo
I've put an interactive demo that shows off my results. This versions uses Unreal
Engine 4 filenames as it's dataset.

Give it a whirl. Then keep reading to learn how it works.

Search Pattern
abc

Results (Top 10)
1374 matches in 535.6 milliseconds

15 - AlphaBlend.cpp

10 - AnimBlueprintCompiler.h

9 - AnimBlueprintCompiler.cpp

7 - ALAudioBuffer.cpp

7 - AISystemBase.cpp

7 - AnimNodeBase.cpp

7 - TabCommands.h

6 - APIVariable.cs

6 - AnimBlueprint.cpp

6 - TabCommands.cpp

Click here for a more featureful demo with multiple datasets and search options.

Sublime Workings
What is fuzzy matching in Sublime Text? And what makes it so cool? I’m glad you
asked.

https://s3-us-west-2.amazonaws.com/forrestthewoods.staticweb/lib_fts/tests/fuzzy_match/fts_fuzzy_match_test.html

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 3/8

Sublime has two super handy navigation functions. One for finding files and one for
finding symbols (functions, class names, etc). Both work the same way. Instead of
having to type the file name exactly right you can just type a few letters. Those
letters are cleverly matched to create a ranked results list. Here’s an example.

This is a file search. I entered the search pattern ‘clu’. The top most result is
‘client_unit.cpp’. The matched characters in each result are in bold.

Here’s another example.

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 4/8

Typing ‘agn’ reveals many AnimGraphNode types. Most items can be uniquely
identified with only a handful of key strokes.

Inspiration
Sublime’s fuzzy matching is great. It’s super great. I love it to pieces. Tragically,
nothing else uses it. Not other text editors. Not IDEs. Not websites with search
fields. Nothing. It should be everywhere but it’s nowhere.

I’d like to change that. First, I want to first unravel the mystery of the fuzzy match.
Second, I want to provide source code that can be used by existing projects to
improve their search.

I have a few specific use cases in mind. I want to support programming. File names,
classes, functions, etc. But that’s not all.

I’m an avid Hearthstone player. It’s common to search for cards. You search in-
game when building decks. Many players also search online. Sites like HearthArena
help in draft mode. I’m also a big fan of card database sites like Hearth.cards.

Most Hearthstone related sites only perform basic substring matching. Does the
card name “Ragnaros the Firelord” contain the substring ‘rag’? Yes it does. But so
too does “Inner Rage”, “Faerie Dragon”, “Magma Rager”, and many more. Being
able to type “rtf” or “ragrs” would be so much faster and better.

It also needs to be fast. It should run interactively while testing against tens of
thousands of entries.

Functionality

http://us.battle.net/hearthstone/en/
http://www.heartharena.com/
http://hearth.cards/

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 5/8

If we experiment with Sublime Text there are two things which are immediately
clear.

1. Fuzzy matching tries to match each character in sequence.

2. There’s a hidden score where some matched characters are worth more points
than others.

We can implement the first part easily. Let’s do it!

Voila! In my library I’ve included this simple version for both C++ and JavaScript. I
did so for a very specific reason. It can trivially replace simple substring matching.
(cough cough. Slack emoji search. cough cough.)

Scoring
The fun part is the hidden score. What factors get checked and how many points are
they worth? First, here are the factors that I currently check for:

Matched letter

Unmatched letter

Consecutively matched letters

Proximity to start

Letter following a separator (space, underscore)

Uppercase letter following lowercase (aka CamelCase)

This part is straight forward. Matched letters are good. Unmatched letters are bad.
Matching near the start is good. Matching the first letter in the middle of a phrase is

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 6/8

good. Matching the uppercase letters in camel case entries is good.

The tricky part is how many points these factors are worth. I believe there isn’t a
single correct answer. Weights depend on your expected data set. File paths are
different from file names. File extensions may be ignorable. Single words care about
consecutive matches but not separators or camel case.

That said I think I found a decent balance. It works great against several different
data sets. I highly suggest looking at the source code.

Score starts at 0

Matched letter: +0 points

Unmatched letter: -1 point

Consecutive match bonus: +5 points

Separator bonus: +10 points

Camel case bonus: +10 points

Unmatched leading letter: -3 points (max: -9)

There is some nuance to this. Scores don’t have an intrinsic meaning. The score
range isn’t 0 to 100. It’s roughly [-50, 50]. Longer words have a lower minimum
score due to unmatched letter penalty. Longer search patterns have a higher
maximum score due to match bonuses.

Separator and camel case bonus is worth a LOT. Consecutive matches are worth
quite a bit.

There is a penalty if you DON’T match the first three letters. Which effectively
rewards matching near the start. However there’s no difference in matching
between the middle and end.

There is not an explicit bonus for an exact match. Unmatched letters receive a
penalty. So shorter strings and closer matches are worth more.

That’s almost it. For a single search pattern results can be sorted by score. It works
well. I encourage you to check out the demo if you haven’t already.

Performance

https://s3-us-west-2.amazonaws.com/forrestthewoods.staticweb/lib_fts/tests/fuzzy_match/fts_fuzzy_match_test.html

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 7/8

Performance

Grep is fast. Really fast. It’s highly optimized and doesn’t need to test each letter. It
can skip ahead.

Fuzzy match is not as fast as grep. It needs to test every letter in the search string.
And while I’ve written what I would consider clean code it has not been ruthlessly
optimized. There’s a certain focus on readability for educational purposes.

My home CPU is an Intel i5–4670 Haswell @ 3.4Ghz. Matching a pattern against
13,164 file names found in Unreal Engine 4 takes ~5 milliseconds on a single
thread. Testing against an English word list with 355,000 words takes ~50
milliseconds. (It was 30ms until the secret sauce improvement.)

JavaScript is not as fast as C++. In fact it seems to be about 25x slower. I am a video
game programmer who knows nothing about webdev. There may be some obvious
room for improvement. An async helper is provided so script doesn’t block on slow
searches.

Closing Thoughts
I love Sublime Text and it’s fuzzy match algorithm. My first goal was to create
something equally effective. I think I achieved that goal.

My second goal was to package that solution onto GitHub in such a way that other
people can benefit. I don’t know if I achieved that goal. I hope so. If you found this
post useful or informative please let me know. If you use this code in any way I’d
love to hear about it. If you want to fork to specialize the code to a specific use case
by all means.

Interactive Demo: Click Here
Source Code: C++ ; JavaScript
GitHub: lib_fts

Thanks for reading.

https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://s3-us-west-2.amazonaws.com/forrestthewoods.staticweb/lib_fts/tests/fuzzy_match/fts_fuzzy_match_test.html
https://github.com/forrestthewoods/lib_fts/blob/master/code/fts_fuzzy_match.h
https://github.com/forrestthewoods/lib_fts/blob/master/code/fts_fuzzy_match.js
https://github.com/forrestthewoods/lib_fts/

3/12/2020 Reverse Engineering Sublime Text’s Fuzzy Match - ForrestTheWoods

https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/ 8/8

Update — 2/18/2017
This project has been updated based on feedback from Sublime Text’s Jon Skinner.
The algorithm now performs an exhaustive search to find all possible matches and
returns the match with the highest score.

Consider the string “ SVisualLoggerLogsList.h” and the search pattern “LLL”. There
are four L’s so they can be matched several different ways. The naive approach
might match the first three L’s. A higher scoring match would skip the first L and
match the three CamelCase L’s.

String: SVisualLoggerLogsList.h
 Pattern: LLL

Possible Matches (in bold):
 SVisualLoggerLogsList.h
 SVisualLoggerLogsList.h
 SVisualLoggerLogsList.h
 SVisualLoggerLogsList.h

The new exhaustive method finds all matches and returns the one with the highest
score. Performing an exhaustive search is slower than finding just the first match.
However the small decrease in speed is more than made up for by the increase in
result quality.

Forrest Smith © 2019. All rights reserved.

https://www.reddit.com/r/programming/comments/4cfz8r/reverse_engineering_sublime_texts_fuzzy_match/d1i7unr/

