3/12/2020 RCRezende Blog: The smallest relevant text snippet for search results

http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html || Go | JUL DEC SEP @ @ @
15 captures " 30 b‘ n u
29 Jul 2012 - 13 Aug 2019 2012 2014 2017

RCREZENDE BLOG

COMPUTER SCIENCE AND SOFTWARE ENGINEERING POSTS

MONDAY, AUGUST 9, 2010 SHARE IT

The smallest relevant text snippet for search results

Like 13 people like this. Sign Up to see what your friends like.

Build a search engine it is not an easy thing to do. There are many interesting challenges
that software engineers must solve in a way that millions of users must be satisfied every
single day. Even the small components in a search engine must be optimized to satisfy a
lot of requirements: quality, performance, accessibility and so on. For example, did you
ever thought about how that small snippets of search results are built? Despite the
importance of that small text to the end user, what serves as a "hint" of what is more
relevant before the user click, people may ignore the clever solutions behind that
snippet.

SEARCH THIS BLOG

Jaded zombies acted quanily but kept diiving their oxen forward. Hark! Toxoc juagle Search
walter vipers quicthy drop on rebeas for meals! ..

Example of text snippet that emphasizes the query terms

ABOUT ME
That "small" component of a search engine is executed, at least, for each result on the

. . L . RODRIGO REZENDE
first page every query processed. That snippet is built from much larger texts found in
VIEW MY COMPLETE

PROFILE

webpages and you still get it all in milliseconds. That must be really fast...

This post will give you algorithms to build that snippets in a clever way, giving to the

end-user a relevant part of the original text found in webpages/documents and doing
that fast.

Problem Definition:

Suppose that you have two inputs: the user query and one text. Also you have one
constraint: The limit of characters to show. Your task is select the most relevant parts of
the original text (giving the user query terms and one constraint of the snippet length) to
show to the user. "Most relevant" can be defined in different ways depending on your
audience, which documents you are indexing and others things I can't imagine right
now... But one thing that we can assume is that people may expect snippets that include
some terms she/he used in query time. So, I'll break the problem in two parts:

o First, select the minimum text window from the original text that includes ALL
query terms (I'll call that as MINWINDOW algorithm).

¢ Second, select the most relevant parts from that window, subject to the length
constraint. (I'll call that as CUT algorithm).

Breaking that in two parts helps to abstract the concept of "most relevant” and left that
to be solved further, also, it helps we use different strategies on the second part (what
depends on many factors stated before). In that post I'll give you one strategy, but I'm
planning a second post to give you other.

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html 1/5

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20140602180325/http://www.facebook.com/campaign/landing.php?campaign_id=137675572948107&partner_id=rcrezende.blogspot.com&placement=like_plugin&extra_1=http%3A%2F%2Frcrezende.blogspot.com%2F&extra_2=US
https://web.archive.org/web/20141230232527/http://2.bp.blogspot.com/_-LOMjzTP9ug/TF7zL_7Wl9I/AAAAAAAACVk/OMnZyDFYQ7w/s1600/search+snippet.png
https://web.archive.org/web/20141230232527/https://plus.google.com/108761329105292568209
https://web.archive.org/web/20141230232527/https://plus.google.com/108761329105292568209
https://web.archive.org/web/20141230232527/https://plus.google.com/108761329105292568209
https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20170426173517/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/*/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://archive.org/account/login.php
http://faq.web.archive.org/

3/12/2020 RCRezende Blog: The smallest relevant text snippet for search results

http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html || Go | JUL DEC SEP

15 captures <430 >

29 Jul 2012 - 13 Aug 2019 2012 2014 2017

that marks where each query term has matched. For example, suppose the text below:

"Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Cras 1d erat massa. Ullamcorper Lorem Sed ipsum massa risus
massa sed id Lorem, ullamcorper nec sollicitudin id, congue
sed tortor. Phasellus sed enim leo. Nullam vehicula varius
faucibus. Vestibulum augue mi, adipiscing ac sagittis ut
amet."

And the query: lorem sed massa.

Your API may return something like that:

token (lorem) found at positions: {0, 89, 130}
token (sed) found at positions: {95, 123, 177, 199}
token (massa) found at positions: {70, 105, 117}

ps.: In the final of this post you can download a simple API I designed to validate the
algorithms, which is based on the inverted indices. If you want a professional API that do
that and it is also free, you may consider Apache Lucene/Solr. Both Lucene and Solr
have mechanisms to retrieve highlighted snippets, check it out at Solr

Highlighting documentation, in special, hl.snippets and hl.fragsize. Also, If you want to
get an idea of how inverted indices API can be implemented in a scalable way, you may
consider this link "Batman e a Escalabilidade" (in Portuguese).

Consider the positions lists as an input of the MINWINDOW algorithm. In the case
above:

List 1 = { 0, 89, 130 };
List 2 = { 95, 123, 177, 199 };

List 3 { 70, 105, 117 }.

The problem can be stated as: select one element from each list so that the difference
between the minimum and the maximum of the selected elements is minimized.

If you are not worrying about the minimization, then you may get several solutions, for
instance:

1. "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras id erat massa.
Ullamcorper Lorem Sed". (At positions 0, 95 and 70)

2. "massa. Ullamcorper Lorem Sed". (At positions 89, 95 and 70)

3. "Lorem Sed ipsum massa". (At positions 89, 95 and 105)

4. "massa sed id Lorem". (At positions 130, 123 and 117)

The fourth snippet is the minimum window that includes all query terms, so the solution
of MINWINDOW algorithm.

Now, I think we can start design the algorithm: One quick and dirty algorithm is the
brute force one. In other words, verify all combinations. Of course that works, but you
don't want that! If you have a constant number of terms in the query, this algorithm is
polynomial on the average length of lists. Although most of search engines limits the
number of tokens in query, say K, this is still impracticable: O(avg”k). But this algorithm
can be still useful as an Oracle for your unit tests.

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html

(ANG)
L f

a0e

2/5

https://web.archive.org/web/20141230232527/http://lucene.apache.org/java/docs/index.html
https://web.archive.org/web/20141230232527/http://lucene.apache.org/solr/
https://web.archive.org/web/20141230232527/http://wiki.apache.org/solr/HighlightingParameters
https://web.archive.org/web/20141230232527/http://blog.ricbit.com/2010/05/batman-e-escalabilidade.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20170426173517/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/*/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://archive.org/account/login.php
http://faq.web.archive.org/

3/12/2020 RCRezende Blog: The smallest relevant text snippet for search results

http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html

|[Go] JUL DEC SEP

15 captures
29 Jul 2012 - 13 Aug 2019

<30 P>

2012 2014 2017

you increase the current minimum element or decrease the maximum element selected

so far. If the lists are sorted (ascendent), you can't decrease the maximum element, then

the only choice you have is try to increase the minimum. If you can't increase the

minimum then the current best solution cannot be improved and the algorithm finishes.

The current minimum can be selected using a minimum heap, which gives the log(K)

factor - O(1) to select and O(log(K)) to update the datastructure. The figure below shows

the algorithms steps:

List 1 o= 89 [130 List 1 0 s 130 |

Lisk 2 95 > | 123 (107|159 | = |List 2 95 123 1MF I:I'.l‘-:lI
List 3 P [105 117 List3 o< 105 117
Windaow Length a5 Winderw Length 25
List 1 0 89 <1300 List 1 il w1 13D.='I |
| List 2 95 |1F3 180 |1s = List? 95{‘_].‘:1- _.].I'u" _'I'I'IlI
Lisk 3 A0 (105 (117 List3 J0|105 117
Window Length 16 Winderw Length x5
List 1 1] 85 130 > List1 1] & 130 > |
w| List 7 -'J'I 123 (177 |19 | = |List? Bk _‘123-{‘].!’.’ :'I'I'Ill
Lisk 3 S (105 |1Ls List 3 S 117 |
Window Length 25 Window Length 13
List 1 0 |89 130
= List 2 95 [123 177 =153
List 3 7o 105 17| |
Window Length B0

Example of the algorithm execution.

Here you have a Java implementation of the algorithm described above, but instead

using a heap it's implemented a linear search to find the current minimum, so the final

complexity is O(avg(list length) * K*2) :

1 //to avoid special cases, it is assumed that

2 //the last element of each list is the Integer.MAX_VALUE
3 //the algorithm returns the position of each term of
4 //the minimum window

5| static int[] solve(int[][] lists) {

6 int m = lists.length;

7 //the current selected element from each list

8 int[] pos = new int[m];

9 //the current best solution positions
10 int[] sol = new int[m];
11 //the score (window length) of current solution

12 int currSol = Integer.MAX_VALUE;
13 while(true) {

14 //select the list that has the increasing minimum element
15 int minList = argmin(pos,lists);

16 //if you can't increase the minimum, stop
17 if (minList == -1) break;

18 //calculate the window size

19 int minValue = lists[minList][pos[minList]];
20 int maxValue = max(pos,lists);

21 int nextSol = maxValue - minValue;

22 //update the solution if necessary

23 if(nextSol < currSol) {

24 currSol = nextSol;

25 System.arraycopy(pos, 0, sol, 0, m);

26

27 //update the current minumum element

28 pos[minList]++;

29

30 return sol;

31}

32 | private static int argmin(int[] pos, int[][] v) {
33 int min = Integer.MAX_VALUE;

34 int arg = -1;

35 for(int i = 0 ; i < v.length; ++i) {

36 if(v[i][pos[i]] < min) {
37 min = v[i][pos[i]];

38 arg = i;

39 }

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html

@

©)
|

a0e

3/5

https://web.archive.org/web/20141230232527/http://1.bp.blogspot.com/_-LOMjzTP9ug/TF9q7DA_UfI/AAAAAAAACV8/HjoQi3tgYn4/s1600/steps.png
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20170426173517/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/*/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://archive.org/account/login.php
http://faq.web.archive.org/

3/12/2020 RCRezende Blog: The smallest relevant text snippet for search results

http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html |[Go] JUL DEC SEP @ ®

15 captures <430 >

29 Jul 2012 - 13 Aug 2019 2012 2014 2017

a0e

45 int arg = -1;
46 for(int 1 = 0 ; i < v.length; ++i) {

47 if(v[i][pos[i]] > max) {
48 max = v[i][pos[i]];
49 arg = i;
50 }
51 }
52 return arg;
53
54 | private static int max(int[] pos, int[][] v) {
55 int arg = argmax(pos, Vv);
56 return v[arg][pos[arg]l];
57| }

The CUT Algorithm

After running the MINWINDOW algorithm you obtain the smallest window text that
contains all query terms. But that window can be still larger than what you want to show
to the users. In that case, you must cut the smallest window. A valid strategy is cut that
window in several positions, giving to the end-user a sequence of fragments which keep
as much queried terms as possible. It looks like the majors search engines do that... I'll
left that strategy, referred here as FRAGMENTCUT algorithm, to the next post. Now, I'll
try a different approach: Cut only the edges.

The EDGECUT Algorithm

The idea of this algorithm is cut words from the edges to preserve the text flow. The
heuristic is that users may like that because they can understand better the snippet
compared to the FRAGMENTCUT strategy.

There are several different cuts on the edges that produces snippets that fits the length
constraint. So, what is the best one? One may prefer the cut that keep the maximum
number of terms, other may prefer the cut that preserves the query terms that maximize
the tf-idf. To abstract that, suppose you have an objective function F that encodes what
you prefer. In that case, let's design an efficient algorithm:

First, the number of all edge cuts is O(M"2), where M is the number of terms in the
query. So the bruteforce algorithm is O(M*2). If we consider M a constant, which is true
in many search engines, that algorithm is O(1). But I'll ignore that and show that
EDGECUT can be done in O(M + M*log(M)).

For this algorithm consider as input a list of positions of terms matched selected by the
MINWINDOW algorithm. Also, the length of each term. Using the previous example:

positions = {130,123,117}

lengths = {5 "loren", 3 "sed", 5 "massa"}

First sort that list of positions (keep track of the lengths). Next it's very simple, you just
need evaluate the objective function in every window size equals the constraint length.
You start moving that window from the first position to the last one.

Java implementation of EDGECUT algorithm

//max: the constraint of snippet length

//pos: the positions of each term and lengths
//returns: the firt and last position

public static int[] cut(TokenInfo[] pos, int max) {
int n = pos.length;

uuphwNneRE

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html 4/5

https://web.archive.org/web/20141230232527/http://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20170426173517/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/*/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://archive.org/account/login.php
http://faq.web.archive.org/

3/12/2020 RCRezende Blog: The smallest relevant text snippet for search results

http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html II Go | JUL DEC SEP

<30 P>

15 captures

29 Jul 2012 - 13 Aug 2019 2012 2014 2017

11 //sort the positions

12 Arrays.sort(pos);

13 //start the window at the first position
14 for(int start = 0; start < n; start++) {

15 //discover the end of the window

16 for(int nextend = end; nextend < n ; nextend++) {

17 int len = pos[nextend].offset - pos[start].offset + pos[nexte
18 if(len > max) break;

19 end = nextend;

20

21 //evaluate the objective function and update the best solution
22 double nextSol = objectiveFunction(pos, start, end);

23 if(nextSol > currSol) {

24 solStart = start;

25 solEnd = end;

26 currSol = nextSol;

27 }

28 }

29 return new int[]{solStart, solEnd};

30

31 public static double objectiveFunction(TokenInfo[] pos, int stari
32 //the objective function is the number of query terms included
33 return end-start+1l;

34 3}

You can download all sourcecode here. This file includes the algorithms described here
plus simple tokenization, inverted indice search and text terms emphasize algorithm.

Like 13 people like this. Sign Up to see what your friends like.

POSTED BY RODRIGO REZENDE AT 2:57 AM [oa]

Home Older Post

Subscribe to: Post Comments (Atom)

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html

@ ®
L f

a0e

5/5

https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/04/persistent-uuid-on-hibernate-using-16.html
https://web.archive.org/web/20141230232527/http://sites.google.com/a/rodrigorezende.net/www/SmallestBestSnippet.java
https://web.archive.org/web/20140602180325/http://www.facebook.com/campaign/landing.php?campaign_id=137675572948107&partner_id=rcrezende.blogspot.com&placement=like_plugin&extra_1=http%3A%2F%2Frcrezende.blogspot.com%2F&extra_2=US
https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20141230232527/http://www.blogger.com/email-post.g?blogID=1381273014978365061&postID=7085170574167403279
https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/
https://web.archive.org/web/20141230232527/http://rcrezende.blogspot.com/feeds/7085170574167403279/comments/default
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20150922092543/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20120729065917/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/20170426173517/http://rcrezende.blogspot.com:80/2010/08/smallest-relevant-text-snippet-for.html
https://web.archive.org/web/*/http://rcrezende.blogspot.com/2010/08/smallest-relevant-text-snippet-for.html
https://archive.org/account/login.php
http://faq.web.archive.org/

